实现代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import matplotlib.pyplot as plt

# 真正的函数
def g(x):
return 0.1 * (x ** 3 + x ** 2 + x)

# 随意准备一些向真正的函数加入了一点噪声的训练数据
train_x = np.linspace (-2,2,8)
train_y =g(train_x)+ np.random.randn(train_x.size) * 0.05

# 绘图确认
x = np.linspace(-2,2,100)
plt.plot(train_x, train_y, 'o')
plt.plot(x, g(x), linestyle = 'dashed')
plt.ylim(-1, 2)
plt.show()

##########

# 标准化
mu = train_x.mean ()
sigma = train_x.std()
def standardize (x):
return (x - mu)/ sigma

train_z = standardize(train_x)

# 创建训练数据的矩阵
def to_matrix(x):
return np.vstack([
np.ones(x.size),
x,
x ** 2,
x ** 3,
x ** 4,
x ** 5,
x ** 6,
x ** 7,
x ** 8,
x ** 9,
x ** 10,
]).T

X = to_matrix(train_z)

#参数初始化
theta= np.random.randn(X.shape[1])

# 预测函数
def f (x):
return np.dot (x,theta)

##########

# 目标函数
def E(x, y):
return 0.5 * np.sum((y - f(x)) ** 2)

# 学习率
ETA = 1e-4

# 误差
diff = 1
# 重复学习
error = E(X,train_y)
while diff > 1e-6:
theta= theta - ETA * np.dot(f(X) - train_y,X)
current_error = E(X,train_y)
diff = error - current_error
error = current_error

# 对结果绘图
z = standardize(x)
plt.plot(train_z, train_y, 'o')
plt.plot(z, f(to_matrix(z)))
plt.show()

##########

# 保存未正则化的参数,然后再次参数初始化
theta1 = theta
theta = np.random.randn(X.shape[1])

# 正则化常量
LAMBDA = 1

#误差
diff = 1

#重复学习(包含正则化项)
error = E(X, train_y)
while diff > 1e-6:
# 正则化项。偏置项不适用正则化,所以为 0
reg_term = LAMBDA * np.hstack([0, theta[1:]])
# 应用正则化项,更新参数
theta = theta - ETA *(np.dot(f(X) - train_y,X)+ reg_term)
current_error = E(X, train_y)
diff = error - current_error
error = current_error

# 对结果绘图
plt.plot(train_z,train_y,'o')
plt.plot(z,f(to_matrix(z)))
plt.show()

##########

# 保存应用了正则化的参数
theta2 = theta

plt.plot(train_z, train_y, 'o')

# 画出未应用正则化的结果
theta = theta1
plt.plot(z, f(to_matrix(z)), linestyle = 'dashed')
# 画出应用了正则化的结果
theta = theta2
plt.plot(z, f(to_matrix(z)))

plt.show()